Imaging Through Scattering
نویسندگان
چکیده
In this thesis we demonstrate novel methods to overcome optical scattering in order to resolve information about hidden scenes, in particular for biomedical applications. Imaging through scattering media has long been a challenge, as scattering corrupts scenes in a non-invertible way. The use of near-visible optical spectrum for biomedical purposes has many advantages, such as optical contrast, optical resolution and nonionizing radiation. Particularly, it has important applications in biomedical imaging, such as sub-dermal imaging for diagnostics, screening and monitoring conditions. We demonstrate methods to overcome and use scattering in order to recover scene parameters. In particular we demonstrate a method for locating and classifying fluorescent markers hidden behind turbid layers using ultrafast time-resolved measurements with a sparse-based optimization framework. This novel method has applications in remote sensing and in-vivo fluorescence lifetime imaging. Another method is demonstrated to resolve blood flow speed within skin tissue. This method is based on a computational photography technique and coherent illumination. This method can be applied in diagnosis and monitoring of burns, wounds, prostheses and cosmetics. A particularly important application of this technology is analysis of diabetic ulcers, which is the main cause for non-traumatic amputations in India. The suggested prototype is suitable for assisting clinicians in assessing the wound healing process. The methods developed in this thesis using ultrafast time-resolved measurements, sparsity-based optimization and computational photography can spur research and applications in biomedical imaging, skin conditions diagnosis and more general modalities of imaging through scattering media. Thesis Supervisor: Ramesh Raskar Title: Associate Professor
منابع مشابه
Study of the Compton scattering effect of soft tissue in PET imaging by Monte Carlo method
Introduction:In PET imaging, one or both of two annihilation photons may change the direction before reaching the detector due to Compton scattering interaction in body. .Methods:This article, a Monte Carlo simulation study, examined the effect of soft tissue on this error.In this work, the PET BiographTM 6 scanner, a simple geometry of soft tissue -including a sphere of soft tissue in center ...
متن کاملEngineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کاملAll Photons Imaging Through Thick Layered Scattering Materials
We demonstrate a method to image through thick layered scattering materials. The method uses time-resolved measurement and leverages all of the optical signal to computationally invert the scattering. OCIS codes: (110.0113) Imaging through turbid media, (110.1758) Computational imaging, (290.0290) Scattering.
متن کاملSimulation of confocal microscopy through scattering media with and without time gating
An efficient and fast simulation technique is presented to calculate characteristic features of confocal imaging through scattering media. The simulation can predict the time-resolved confocal response to pulsed illumination that allows optimizing of imaging contrast when time-gating techniques are applied. Modest computational effort is sufficient to obtain contrast predictions for arbitrary n...
متن کاملTransillumination imaging through scattering media by use of photorefractive polymers.
We demonstrate the use of a near-infrared-sensitive photorefractive polymer with high efficiency for imaging through scattering media, using an all-optical holographic time gate. Imaging through nine scattering mean free paths is performed at 800nm with a mode-locked continuous-wave Ti:sapphire laser.
متن کاملAn iterative method to estimate x-ray attenuation coefficients in computed tomography
Introduction: The basis of image formation in Computed Tomography (CT) lies in the x-ray linear attenuation coefficient of the scanned material. Compton scattering and photoelectric effect are the dominant interactions of the x-ray photons with the subject, in the range of diagnostic radiology. These two coefficients are important in tissue characterization by Dual-Energy CT (D...
متن کامل